956 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. CAD-6. NO. 6, NOVEMBER 1987

Genetic Placement

JAMES P. COHOON, MEMBER, IEEE, AND WILLIAM D. PARIS

Abstract—A placement algorithm, Genie, is presented for the assign-
ment of modules to locations on chips. Genie is an adaptation of the
genetic algorithm technique that has traditionally been a tool of the
artificial intelligence community. The technique is a paradigm for ex-
amining a state space. It produces its solutions through the simulta-
neous consideration and manipulation of a set of possible solutions.
The manipulations resemble the mechanics of natural evolution. For
example, solutions are ‘‘mated’’ to produce ‘‘offspring’’ solutions. Ge-
nie has been extensively run on a variety of small test instances. Its
solutions were observed to be quite good and in several cases optimal.

Keywords—Placement, genetic algorithms, VLSI, physical design.

I. INTRODUCTION

HE LAYOUT PROBLEM is a principal problem in
the design of VLSI chips. Because of its complexity,
it is often decomposed into several distinct subproblems:
1) Chip planning, 2) Partitioning, 3) Placement, 4) Rout-
ing. This paper investigates the placement problem—the
assignment of circuit elements to locations on the chip.
The input to our variant of the placement problem is a set
of m circuit elements or modules, M = {e,, - - - , e,},
and a set of n signals or nets, N = {s{, - - - , s, }, where
a net is a set of modules to be interconnected. We are also
given as input a set of / chip locations or slots, L = {c,,
, ¢/}, where I = m. The slots are organized as a
matrix with » rows and ¢ columns. The objective is to
optimally assign each module to its own slot while satis-
fying electrical constraints, where optimality is measured
in terms of the expected routability of the placement. Two
components common to many routability measures are es-
timates of the amount of wire congestion, and the amount
of wire required to route all interconnections. Minimizing
the expected wire congestion is important as a feasible
wiring is usually found more readily with less congestion;
minimizing the expected amount of wire is important as
the circuit’s signal propagation rate is typically inversely
proportional to the amount of wire.

Manuscript received December 22, 1986; revised May 28, 1987. This
work was supported in part by the National Science Foundation under Grant
DMC-8505354, the Virginia Center for Innovative Technology under Grant
INF-86-001, and a General Electric Microelectronics Center Grant.

J. P. Cohoon is with the Department of Computer Science, University
of Virginia, Charlottesville, VA 22903.

W. D. Paris was with the Department of Computer Science. University
of Virginia, Charlottesville. He is now with Syntek Systems Incorporated,
Bethesda, MD.

IEEE Log Number 8716061 .

His genie led him into the pleasant paths.

—Anthony Wood, 1662

Because of its importance, the placement problem has
received considerable attention and many diverse solution
strategies have been proposed: partitioning [1], [2], quad-
ratic assignment [3], force-directed (4], resistive network
[5]. and simulated annealing [6].

The contribution presented here is a new placement al-
gorithm, Genie, which is based on the genetic algorithm
approach [7]. This approach—like simulated annealing—
is a paradigm for examining a state-space. It produces
good solutions through simultaneous consideration and
manipulation of a set of possible solutions. But unlike
simulated annealing, which has been applied primarily to
combinatorial optimization problems during its five years
of use, most previous applications of the genetic algo-
rithm technique have been to artificial intelligence prob-
lems [8]. Based on our preliminary experiments, this new
use of genetic algorithms appears to be a promising
method of solving placement problems.

II. GENETIC ALGORITHM PRELIMINARIES

Genetic algorithms represent and transform solutions
from a problem’s state-space II in a way that resembles
the mechanics of natural evolution. As a result, much of
the terminology is drawn from biology and evolution. The
subspace P of II currently being examined is referred to
as the population. The population is composed of strings,
where a string is an encoding ¢ of a solution for the prob-
lem. A string is a concatenation of symbols or alleles,
where each allele is an element of an alphabet . Each
string is assigned a score (positive real number) through
a function ¢: I = R". Without loss of generality, we
assume that the objective function seeks a global mini-
mum. Hence, string x is preferred to string y if g(x) <
a(y).

Each iteration or generation, a fraction K, of P is se-
lected to be parents by repeated use of the choice func-
tion, ¢: 2" - 11 x II, where 2" is the power set of II.
New solutions, known as offspring, are created by com-
bining pairs of parents in such a way that each parent con-
tributes to the information carried by its associated off-
spring string. This recombination operation, ¥: IT X II,
is known as crossover. After the crossovers are per-
formed, a selector p: 2™ x 2" — 2™ s applied to the
previous generation and the offspring to determine which

0278-0070/87/1100-0956$01.00 © 1987 IEEE

COHOON AND PARIS: GENETIC PLACEMENT

1. P ¢ initial population constructed with function =

2. pe (Pl
3. fori ¢ 1to NUMBER_GENERATIONS do
4. Offspring - &
S. fork e 1top-K do
6. (x, y) € &P)
7. Offspring «— Offspring U {y(x, y)}
8. end for
9. P &« p(P, Offspring)
10. for each string xe P do
11, wilh probability K, mutate x with p
12. end for
13. end for

14. return highest scoring string in P

Fig. |. Genetic algorithm paradigm.

strings survive to form the basis of the next generation.
The number of strings in this next generation typically
equals the number in the previous generation. Each sur-
viving string in the population with probability K, under-
goes mutation, p: II = I1. This perturbation helps prevent
a premature loss of diversity within a population by intro-
ducing new strings. Over many generations, better scor-
ing strings tend to predominate in the population while
less fit strings tend to die-off. Eventually, one or more
super-fit strings evolve. A high-level algorithmic descrip-
tion of a basic genetic algorithm is given in Fig. 1.

During algorithmic development and experimental
analysis, we analyzed multiple string encodings, initial
population constructors, crossover and mutation opera-
tors, selection techniques, and scoring functions. We also
considered several ways to direct interaction among the
population. For example, a genetic algorithm that divided
the population into two castes was developed and was very
quickly abandoned. The results of our development and
analysis are presented in the next two sections.

III. GENIE SPECIFICATION

In its natural setting of biological organisms, evolution
is a slow process where new traits are introduced through
the random mutation and mixing of genes. From a prelim-
inary investigation into genetic placement, we determined
that similar restrictions on operator functionality were not
always necessary. Therefore, during Genie’s algorithm
development, we adopted a directed-evolution method-
ology. With this methodology, examination of the state-
space is influenced so that solutions with desirable char-
acteristics are obtained more quickly. We avoid a popu-
lation of inferior local optima by discouraging premature
homogeneity through the use of random variates in some
of the operators and functions.

A. String Encoding &

We considered several encodings for the strings, all
using [alleles, where [is the number of slots on the chip.
Each encoding assumed that the underlying representation
of a chip was a matrix organized in row-major order from
top to bottom. Two of these alternative encodings are
given in Fig. 2(b) and (c). They describe the module
placement that is given in Fig. 2(a). In that figure, the ith
slot is labeled i in its upper left corner.

The encoding &, in Fig. 2(b) divides each allele into
two fields, /; and M;, 1 < j < L. Field I, specifies a lo-

957
! M R
1 4 2 1 4
E—
2 1 4 2 8
3 5 6 3 6
0 3
€4 | €9 | €7 4 7 3 4 2
—
452 Se6 6el 5 6 1 5 4
es[es [es 6 (29 6 (1
7 9 5 7 1
8 8 8 8 2
9 (131|7 9 11

(@) (b) ©

Fig. 2. Some string encoding. (a) Placement. (b) £,. (c) &,.

cation on the chip and field M, specifies the index of the
module in /;th location. Thus, the third allele in Fig. 2(b)
specifies that module e¢ is found in the fifth location. The
encoding £, in Fig. 2(c) uses a single field R; for each
allelej, 1 <= j = L R ; is used to calculate the module
located in the jth location on the chip. Besides the obvious
function that directly used R; as the index of the module
in the jth location, we considered a variant of the ordinal
function of Grefenstette, Gopal, Rosmaita, and VanGucht
[9]. It works as follows: the module with the R th smallest
index with respect to all modules is assigned the first lo-
cation; the module with the R,th smallest index with re-
spect to the remaining modules is assigned the second lo-
cation, and so on. Thus, as the first allele in the encoding
of Fig. 2(c) contains a 4, module e, with the 4th smallest
index among modules {e,, e,, €3, ey, €5, €5, €7, €3, €9}
is assigned to the first slot. As the second allele contains
an 8, module e, with the 8th smallest index among unas-
signed modules {e,, e,, €3, es, €, €7, €3, €9} is assigned
the second slot. Similarly, as the third allele contains a 6,
module e; with the 6th smallest index among unassigned
modules {e,, e, €3, €5, €5, €7, eg} is assigned the third
slot. Like £, encoding £, is particularly suitable for tra-
ditional genetic crossover operators that copy a contig-
uous portion of one parent into the offspring while having
the other parent copy over as many other positions as pos-
sible, since the resultant solution is automatically a fea-
sible solution. However, neither encoding is amenable to
the quick updating of an offspring or mutation’s score and
neither is suitable for a directed evolutionary crossover or
mutation operation. Therefore, we explicitly encoded the
solution as a string where the jth allele specified the index
of the module in the jth location.

Note that two modules ¢, and e, are adjacent if their
slots share a common side or corner and are rectilinearly
adjacent if their slots share a common side. Thus, in Fig.
2(a), module e, is adjacent to modules es, eg, €7, €g, and
eq and is rectilinearly adjacent to modules es, €6, and e;.

B. Scoring Function ¢

To aid in the comparison of our algorithm with other
algorithms, all instances were evaluated with respect to a

958 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. CAD-6, NO. 6, NOVEMBER 1987

variant of the scoring function used by Kirkpatrick, Ge-
latt, and Vecchi’s simulated annealing placement algo-
rithm [6]. Informally, the scoring function was an aggre-
gate of the half perimeter of the bounding rectangle for
each net and of the excess horizontal and vertical channel
usage. A formal specification follows. The routing subre-
gion between two consecutive rows is a horizontal chan-
nel and the routing subregion between two consecutive
vertical rows is a vertical channel. Let []; be the size of
the perimeter for the bounding rectangle of net i, 1 =< i
< n, where the length of a side is the number of channels
it crosses and n is the number of nets. Let A; be the num-
ber of nets whose bounding rectangle crosses horizontal
channel i, 1 < i < r — 1. Let v; be the number of nets
whose bounding rectangle crosses vertical channel i, 1 <
i < c¢— 1. Let h and 7 be, respectively, the mean values
of the h;’s and the v,’s. Let 5, and s, be measures, respec-
tively, of one standard deviation of horizontal and vertical
channel usage, i.e.,

1 N\
‘< (h; — h)
— Z (i
S i=1 r—2
and
1/2
Sl,’ = (‘il (vl — 5)2
i=1 ¢ — 2

Let i, and & ; be measures, respectively, of excessive usage
(if any) in horizontal channel i and vertical channel j, i.e.,

iz h[—ﬁ—sh ifﬁ+sh<h,-
' 0 otherwise
and
. v, - v —s, it + 5, < v,
/ 0 otherwise.
The scoring function ¢ returns
n r—1 c—1
LN O+ B A+ D ok (1)

i=1 i=1 j=1

Such a function encourages short interconnections with
even horizontal and vertical channel capacities. For stan-
dard cell placement, we recommend that the score be re-
duced when adjacent cells in a row belong to the same
net. This reduction is applied since it is often possible to
connect such cells without going into a channel.

C. Population Constructor =

Three population constructors =, &,, and E ; were ini-
tially considered. Constructor &, randomly places mod-
ules; constructors =,, and =, attempt to group modules
in the same net to improve the scores of the initial popu-
lation. As all three constructors had a randomizing com-
ponent, they could be repeatedly applied to produce an
initial population of desired size.

Constructors &, and = ; choose the order that the mod-

-

(a))]

Fig. 3. Order of slot assignment. (a) Z,. (b) = ;.

ules are assigned in the same manner. Their processes re-
semble the repeated folding of a one-dimensional place-
ment. Their constructive process starts by selecting a net
at random and choosing its modules in net list order. Let
i be the number of modules assigned so far. Next, an un-
selected net containing the ith placed module is chosen
and its unplaced modules are assigned locations. If no
such net exists, then an unselected net containing the
i — Ist placed module is sought, and so on. If there are
no unselected nets containing modules already placed, an
unselected net is chosen at random and the process con-
tinues until all modules have been placed.

The difference between X, and Z ; is the order the slots
are assigned. Constructor Zt, places modules in boustro-
phedon fashion (Fig. 3(a)) and constructor X; places
modules in row-major fashion (Fig. 3(b)).

One difference between our genetic algorithm and the
algorithm of Fig. 1 is that our algorithm does not iterate
for some fixed number of generations. Instead, our algo-
rithm terminates once the population is homogeneous with
respect to the best solution score (i.e., if the best score
has not improved in & generations, the algorithm termi-
nates). We found that the choice of constructor affected
both the quality of the solution and the number of gener-
ations needed to generate a homogeneous population.
Populations constructed by X, tended to have a slower
rate of convergence towards homogeneity. Populations
constructed by =, had better average initial scores, but
tended to converge almost immediately to inferior local
minima. We believe this occurred because the solutions
by &, were good, but often were far from optimal and
necessitated a great deal of hill-climbing to reach an op-
timum. There was so much score degradation as a result
of the hill-climbing, that the solutions tended to die-off
before they could improve. This lead us to try = ;, which
attempts to group modules in the same net, but not nec-
essarily as closely as 5, does. As a further conservative
measure, we did not strictly use X ; to construct the inital
population. Our experiments indicated that a mixed initial
population—75 percent of the initial placements con-
structed by = and the remaining 25 percent constructed
by &,—resulted in a good initial mean population score
while maintaining a satisfactory amount of diversity. Ta-
ble I illustrates the results of several combinations of =,
X ,, and E; on a problem instance with 81 modules to be
placed on a chip with nine rows and nine columns.

COHOON AND PARIS: GENETIC PLACEMENT

TABLE 1
COMPARISON OF POPULATION CONSTRUCTORS
Score Initial Population Constructor
100% =, 100% =, 5%, 15%E, | 25% E, 75% S,

Initial
(average) 517 329 379 423

Final

(best) 120 186 169 120
Iterations 55,000 35,000 40,000 20,000

D. Crossover Operator Y

Our initial investigation of crossover operators consid-
ered two types. One combined the two parent strings to
form the offspring string by using information passing
[10]; the other created the offspring by using one parent
to define a rearrangement of the other parent [9]. We con-
cluded that operators of the first type were more amenable
to directed-evolution principles. Therefore, the majority
of our time was spent analyzing such crossover operators.
From this analysis, two crossover operators, y, J,, were
derived. Both ¥, and y, perform a ‘‘cut-paste-and-patch’’
with the two parents. One parent is selected randomly to
be the basis of the offspring. It is called the rarget parent.
The other parent is called the passing parent. A portion
of its alleles are ““cut’’ from it and ‘‘pasted’’ into a copy
of the target parent. The copy is then ‘‘patched-up’’ to
make it a legal solution.

Let o, and «, be, respectively, the passing and target
parents. Operator y; operates in the following manner.
An identical copy «, of « is created. A module e, is
randomly selected from M. Its location is determined in
a,and a,. Letcy, - -+, cyand dy, * - -, d4 be the adja-
cent modules above, right, below, and left of ¢, in, re-
spectively, «, and «,. The goal of ¥, is to reconfigure
offspring «, such that modules ¢, * * + , ¢, occupy, re-
spectively, the starting slots of d, - * -, d4 while mini-
mally perturbing the other modules. The reconfiguration
is done in the order ¢, ¢3, ¢, and ¢4 and uses a *‘sliding”’
process to make room for ¢, * * + , c;. A graphical rep-
resentation of ’s operation is given in Fig. 4. The ar-
rows in Fig. 4(c) do not point to the d;’s final locations.
They instead indicate the other modules that are affected
by the crossover.

The sliding process begins by determining a sequence
or a chain of modules from d, to ¢,. Fig. 5(a) shows some
of the forms the chains would take if ¢, is either to the
left or below e,. The remaining cases are analogous. If ¢,
is located above e,’s row, then the chain extends verti-
cally from d, to ¢;’s row, and then horizontally to ¢,. If
¢, is either on or below e,’s row and to its left (right),
then the chain extends left (right) one column from d,,
then down to ¢;’s row, and then horizontally to ¢,. If in-
stead ¢, lies below ¢, in ¢,’s column, then the path extends
randomly from d, either right or left one column, then
proceeds vertically to ¢,’s row, and then horizontally one
column to ¢,’s location. Once the chain is established, its
modules are iteratively shifted along its path away from
d; toward c,. Finally, ¢, is moved into the unoccupied

959

1 €2 <—|
d,
d, ¢y d,
dse. d; Ca € Cy
cl dy dycy

Ca € Ca c dy
¢ 4

€3

(a) (b) (©)

Fig. 4. Crossover operator y,. (a) Passing parent. (b) Target parent. (c)
Offspring.

c3 €3
_—Lcl
€
d, c2 ¢y J cs
Cq
Cq

(@) (b} (c) &

€3

Fig. 5. Some pathological y, sliding cases and their resolution.

location above e;. The module shifting terminates once
either a module is assigned to an unoccupied location or
a module is assigned c¢,’s location.

Once ¢, is moved into its new location, c¢3 is moved
directly below e,. The chain for this process is created
analogously to the chain for ¢;. Fig. 5(b) shows several
of the possible chain-forms from d; to c;.

Moving ¢, and ¢, is complicated by the need to avoid
perturbing e, ¢;, and c; as they are already in their cor-
rect locations. Fig. 5(c) shows several of the possible
chain-forms from d, to c,. If ¢, is either to the right of e;
or if it lies above ¢;’s row or below ¢;’s row, then the
chain extends vertically from d, to ¢,’s row, and the hor-
izontally to c,’s location. If, instead, ¢, is to the left of
e, and lies on ¢, c3, or ¢,’s row, then a horseshoe-like
chain (i.e., a vertical-horizontal-vertical move) is cre-
ated that passes over c¢; or under c;. If ¢; lies on either e;
or ¢,’s row, the horseshoe chain then passes above ¢y,
unless ¢, lies in the top row where the chain instead must
pass below ¢5. Similarly, if ¢, lies on ¢;3’s row, the horse-
shoe chain then passes below c¢3, unless cj lies in the bot-
tom row where the chain instead must pass above ¢;.

Finally, ¢, is moved into d,’s location by creating a
chain similar to ¢,’s. Fig. 5(d) shows several of the pos-
sible chain-forms from d, to c,.

